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Abstract 

Contamination warning systems (CWS) are strategies to lessen the effects of contamination in 

water distribution systems by delivering early indication of events. A critical component of 

CWS, online quality monitoring, involves a network of sensors that assess water quality and alert 

an operator of contamination. Utilities developing these monitoring systems are faced with the 

decision of what locations are optimal for deployment of sensors. The TEVA-SPOT software 

was developed to analyze the vulnerability of systems and aid utilities in designing sensor 

networks. However, many small utilities do not have the technical or financial resources needed 

to effectively use TEVA-SPOT. As a result, a sensor placement algorithm was developed and 

implemented in a commercial network distribution model (i.e. KYPIPE) as a simple tool to aid 

small utilities in sensor placement. The developed tool was validated using 12 small distribution 

system models and multiple contamination scenarios for the placement of one and two sensors. 

Results were compared with data from identical simulations runs in TEVA-SPOT to verify the 

effectiveness of the proposed algorithm. Because the proposed algorithm uses a simple complete 

enumeration strategy for sensor placement, the algorithm was able to select the same or superior 

nodes to those selected by TEVA-SPOT.  

  

 

 

 

 

 

 

 

 

Introduction 

Water distribution systems are an integral part of society, and the availability of a clean and 

dependable supply of water influences both the socioeconomic status and health of a populace. 

In recent years, protecting the nation’s critical infrastructure from terrorist attacks has become a 

priority, and efforts to protect the water infrastructure are included in this goal. Water 
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distribution systems are considered to be vulnerable to intentional, along with accidental, 

contamination because they have a large spatial distribution and multiple points of access (Hart 

& Murray, 2010). In an effort to mitigate the risks from contamination of the water supply, 

contamination warning systems (CWS) have been proposed as a cost-effective and reliable 

strategy. 

Contamination warning systems are proactive strategies to reduce public health impacts and 

economic loss from contamination in distribution systems by providing an early indication of an 

intentional or accidental contamination event (Janke et al., 2006). A CWS includes deployment 

and operation of online sensors, which involves a network of sensors that can assess water 

quality in the system and alert an operator of a potential contamination event. The challenge 

involved with developing these water quality monitoring systems is determining which locations 

are best suited for deployment of sensors. Budget constraints will limit the number of sensors a 

utility can deploy, and they must be placed in locations that maximize their ability to detect 

contaminates and provide the greatest protection of human health (McKenna et al., 2006).  

To date, there is no applicable federal or state guidance to assist utilities in the deployment of 

water quality sensors. Technological advancements in sensor placement optimization software 

may help solve the problem of sensor placement issues for some utilities. The TEVA-SPOT 

software (Threat Ensemble Vulnerability Assessment Sensor Placement Optimization Tool) has 

been developed to analyze the vulnerability of drinking water distribution networks and aid 

utilities in the design of sensor networks (Berry et al., 2010). While TEVA-SPOT uses public 

domain software (e.g. EPANET) along with a sophisticated optimization algorithm to evaluate 

the ability of different sensor combinations to detect contamination events, the software can be 

intimidating to use for medium to small utilities. As a result, application of the software has 

largely been limited to large utilities or research studies. This paper proposes the use of a fairly 

simple enumeration method coupled with a widely used commercial network distribution model 

(i.e. KYPIPE) for applications of sensor placement to small or medium sized utilities.  For the 

purposes of this discussion, KYPIPE was primarily used in order to facilitate access and 

generation of a dataset of network models from a statewide database. The proposed heuristic can 

be easily adapted for use with EPANET directly or with any other commercial software.  

In order to evaluate the proposed heuristic, the model is applied to 12 different water distribution 

systems associated with small water utilities in Kentucky (Jolly et al., 2013). The model is 

executed with a variety of contamination scenarios for all systems, placing a number of sensors 

reasonable for the budget of a small utility. The results of these applications are then compared 

to the results obtained from applying TEVA-SPOT to the same 12 systems.  In each case, sensor 

locations are selected by minimizing the time to detect the contaminant.  

 

Current Sensor Placement Software 

The Threat Ensemble Vulnerability Assessment Sensor Placement Optimization Tool (TEVA-

SPOT) Program was developed as a probabilistic framework for analyzing the vulnerability of 

drinking water distribution networks (Murray et al., 2004). This collection of software tools to 

aid utilities in the design of sensor networks was developed by researchers from the 

Environmental Protection Agency (EPA), Sandia National Laboratories, the University of 
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Cincinnati, and Argonne National Laboratory (Murray et al., 2010). TEVA-SPOT creates a 

threat ensemble, consisting of a set of contamination scenarios, and the vulnerability of the 

network is assessed using the entire threat ensemble (Murray et al., 2004).  

TEVA-SPOT contains three main software modules. The first module simulates the set of 

incidents in the threat ensemble, the second module calculates the potential consequences of each 

incident, and the third module optimizes for sensor placement. The design basis threat consists of 

the set of incidents for the sensor network to detect. The consequences are calculated based on 

one or more of the performance objectives that include the number of people who become ill as a 

result of exposure, percentage of incidents detected, time to detection, and length of pipe 

contaminated. When TEVA places sensors, the mean consequence for a given objective is 

minimized. This is equivalent to assuming that each contamination scenario is equally likely to 

occur and that each is important when selecting sensor locations. The user is able to specify 

weights to put more importance on locations with a higher likelihood of being contaminated 

(Murray et al., 2010). A flow chart of the TEVA-SPOT software is shown in Figure 1. 

 

Figure 1. Flowchart of TEVA-SPOT Software (Murray et al., 2010). 

TEVA uses simulation and optimization models to select optimal placement of sensors for a 

CWS by implementing two main steps: modeling and decision-making. The modeling process 

first involves creating a network model for a hydraulic and water quality analysis. TEVA-SPOT 

uses EPANET (U.S. EPA, 2000) to perform these analyses. An EPANET INP file is used to 

describe the physical characteristics of the system, and this file is built using the EPANET user 

interface. Using models for the purpose of contamination warning systems requires a high degree 

of accuracy.  

The design basis threat describes the type of threat that the utility wants to protect against when 

designing a CWS. Contamination incidents are described by the specific contaminant, the 
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quantity and duration of injection of the contaminant, and the locations where the contaminant is 

introduced. The program understands that these conditions cannot be known before an incident 

occurs, so the modeling process takes this uncertainty into account. For example, probabilities 

can be assigned to each node in a system to specify the likelihood that contamination would 

occur at that location. An ensemble of incidents is then simulated, and sensor network designs 

are chosen based off how they perform for the entire ensemble of incidents (Murray et al., 2008).  

TEVA measures performance of sensor network designs based on minimizing certain 

performance objectives including the number of failed detections, extent of contamination, 

mass/volume consumed, and time to detection. If a utility has several important priorities for the 

performance of their sensor design, multiple objectives can be considered by assigning a relative 

importance, or weight, to each objective. Modeling the utility response time, the time between 

initial detection of the contaminant and effective warning of the population, is another important 

aspect of the modeling process (Murray et al., 2010). The user must also input information 

defining all potential sensor locations in the system. When selecting nodes for potential sensor 

locations, certain requirements are needed such as accessibility, security, and protection from the 

environment. A longer list of feasible sensor sites results in a sensor design that is more likely to 

perform well. The benefits of using sites that need some adaptation to meet requirements may be 

worth the additional costs, but sensor placement can be restricted to locations preferred by the 

utility. Characteristics of the sensor behavior are also needed to measure performance of a CWS, 

so the sensor type, detection limit, and accuracy should be included (Murray et al., 2008). 

The second main step in the TEVA sensor placement framework is the decision process. The 

decision making process uses an optimization method and evaluates sensor placement by 

analyzing trade-offs and comparing a set of designs to account for modeling and data 

uncertainties. The goal of this step is to aid utilities in understanding the public health and cost 

tradeoffs between different sensor placement designs and ultimately help them choose the sensor 

design that will best meet their needs. This is accomplished by using an incremental approach for 

applying optimization to generate a set of sensor placement designs that can be compared and 

contrasted (Murray et al., 2008).  

The first sensor placement design is found under ideal conditions with simplifying conditions. 

The assumptions are then removed one at a time to make the designs more realistic. For example, 

simplified conditions would assume all nodes in the system as potential sensor locations, 

instantaneous response time, and perfect sensors. More realistic conditions would assume 

delayed response time and would force sensors to be placed at utility-owned or public locations 

(Murray et al., 2006).  The performance of the new sensor design is compared with the previous 

designs and baseline case with no sensors, quantitatively and visually, to understand what has 

been gained or lost with each assumption. The tradeoffs can be analyzed in terms of the desired 

performance objective, such as the percent reduction in the number of illnesses with each design 

(Murray et al., 2010).  

TEVA-SPOT provides three optimization method options in order to develop a sensor design: 

mixed-integer programming (MIP), a greedy randomized adaptive search procedure (GRASP) 

heuristic, and a Lagrangian relaxation method. The standard formulation used to evaluate 

impacts is a MIP formulation, which optimizes linear objective functions by maximizing or 

minimizing the function subject to constraints. The MIP solver minimizes the predicted impact 

of an ensemble of contamination events using the specified sensor set size. This solver is exact 
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and will guarantee to find the optimal solution (Murray et al., 2010). MIP technology can be 

used if the problem instances are not very large and if sufficient power is available. However, 

heuristic methods are commonly used when working with large problem instances because the 

number of constraints and variables will grow rapidly as problem size increases (Berry et al., 

2006). 

The GRASP algorithm finds solutions by systematically exploring the space of possible sensor 

layouts, and it typically produces solutions as effective as results from a MIP in less time. This 

solver was utilized to collect data in TEVA-SPOT for this study. The GRASP randomly creates a 

set of starting points using greedy bias to make these reasonable approximations. It then explores 

ways to move one sensor to a new location that will improve the objective function, making 

these swaps until a better solution doesn’t exist. The only limitation of this method is that it still 

has a fairly large memory requirement (Murray et al., 2010).    

The Lagrangian method removes a set of “difficult” constraints, resulting in a problem that is 

easier to solve. Penalties are then added to the objective function to satisfy the relaxed 

constraints. Penalty weights are manipulated and an iterative algorithm drives the solution to 

feasibility (Murray et al., 2010).  

KYPIPE Sensor Placement Tool 

KYPIPE was first developed in the 1970s to calculate steady state flows and pressures in a water 

distribution system (Wood, 2010). The program can complete an analysis for any configuration 

of pipes including hydraulic components such as pumps, valves, fittings with significant head 

losses, and storage tanks. The program also has the capabilities to execute an extended period 

simulation (EPS) that can account for the variation in storage tank levels over time (Wood, 

2010).  KYPIPE performs hydraulic analyses using the KYPIPE hydraulic engine which is based 

on a nonlinear solution of the network loop energy equations (Wood, 1981).  

The Water Quality Sensor Placement Tool has been developed to work with the existing 

KYPIPE graphical user interface. The goal is to provide a simple tool to aid utility managers in 

the optimal placement of sensors in their distribution systems. The simplicity and ease of use of 

the tool makes it attractive for use in small utilities. The sensor placement tool recommends 

optimal sensor placement, regardless of how many sensors are implemented, based on 

minimizing time to detection. The tool considers detection events at nodes throughout the entire 

system, and recommends optimal sensor placement based on the locations that can detect 

contamination events the fastest.  

The KYPIPE sensor placement routine utilizes four different input files. The first input consists 

of a normal KYPIPE input file. This file is used to describe the physical parameters of the 

network and to specify the parameters for the required extended period simulations.  The second 

file is an EPANET INP file that is generated internally within KYPIPE using data from the 

normal KYPIPE data file.  Some adjustments are made to accommodate differences in the way 

the two programs handle certain components such as pumps (i.e. nodes vs. links). The third file 

is the travel time matrix, which is generated using hydraulic and water quality calculations. The 

fourth file is used to prescribe the parameters associated with the sensor placement algorithm. 

Figure 2 displays the entire procedure executed by the KYPIPE WQ Sensor Placement Tool, 

followed by further explanation of the process.  
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Figure 2. Flowchart of KYPIPE Sensor Placement Methodology. 

When performing a sensor placement analysis, KYPIPE utilizes the EPANET engine for both 

hydraulic and water quality calculations. Therefore, use of the sensor placement tool will first 

require KYPIPE to export the network model into EPANET format (INP file) that contains all 

hydraulic and water quality data. KYPIPE then makes calls to the EPANET engine to perform 

the hydraulic and water quality analyses, and result files are generated to the hard drive. The tool 

also uses this data to generate the travel time matrix, which is used to perform the optimal sensor 

placement calculations. 

The optimal sensor location information is written to a file on the hard drive, and KYPIPE is able 

to read the file and display the chosen sensor locations on a graphical representation of the water 

distribution network. KYPIPE is also able to read the results files and display data from the 

hydraulic and water quality analyses. Figure 3 shows the steps to be carried out by the user in 

order to execute the sensor placement tool in KYPIPE.  
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Figure 3. Sensor Placement Tool Flowchart.  

For the case where only one sensor is being considered, the algorithm simply iterates through all 

combinations of injection points and possible sensor locations. This results in a matrix of travel 

times between the injection locations and possible sensor nodes. The algorithm then simply 

enumerates through the set of solutions to find the "optimal" sensor location (with the lowest 

average time to detection). Because the algorithm computes the travel times for all sensor 

locations, it is also possible to list the average time to detection for each sensor location, thus 

providing the user with alternative options in the event the "optimal" node turns out to be 

impractical for other secondary conditions (e.g. physical access, communication or power 

limitations, etc.). 

For situations involving multiple sensors, the algorithm calculates the average travel time for 

each set of sensor locations.  As with the single case, these results are then stored in a matrix of 

travel times for each combination of multiple sensors. The methodology for determining the 

average travel time for two sensors is illustrated in Figure 4. The contaminant is “injected” at the 

first possible injection site, and the travel time for the contaminant to reach each of the sensors in 

the first sensor combination is determined. The values for T1 and T2 represent the travel times 

from each injection node to sensor 1 and sensor 2, respectively. The travel time assigned to this 

particular set of sensor locations and injection node will be the minimum of the two travel times, 

since the contaminant is considered to be detected when it reaches the first sensor. This process 

is repeated for all possible injection nodes in the system. The average travel time for the 

particular set of sensor locations is calculated by averaging the minimum travel times from all 

injection sites.  
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Figure 4. Sensor Placement Tool Theory. 

This process is then repeated for every set of possible sensor locations, resulting in an average 

travel time for all combinations of two sensors in the system. The sensor combination with the 

lowest average travel time will be considered the optimal sensor location. As with the single 

sensor case, the user may display the travel times for all the sensor location combinations if 

desired, thereby providing information on inferior solutions as well. 

It should be recognized that use of an optimization algorithm based on complete enumeration 

will result in an exponential increase in the evaluation of combinations of travel times as one 

considers more than one sensor. However, many small and even medium sized systems may not 

have the financial resources to place a large number of sensors across the network.  Thus the 

ability to site a smaller number of sensors (e.g. two to three) may be sufficient to provide 

adequate coverage for such systems.  As system become larger, it is likely that they may contain 

multiple pressure zones. In such cases the proposed algorithm may be then be applied to each 

pressure zone individually, thereby limiting the computational burden while providing for more 

sensors.  Finally, the ability to obtain and display the complete solution space for the problem 

may allow the utility to identify sub-optimal sites that may still be able to provide for expanded 

protection for the utility.    

In order to maximize the potential coverage of the sensor locations, the KYPIPE Sensor 

Placement Tool considers all nodes to be potential sensor locations (i.e. including tanks, pumps, 

reservoirs, and junctions). However, the algorithm excludes all dead-end nodes as possible 

sensor locations. The average travel time to dead-end nodes will generally be much higher, 

skewing the average times to detection. Possible injection sites are considered to be all non-zero 

demand nodes, excluding dead-end nodes. Dead-end nodes are considered to be consumption 

nodes, so any contaminant injected at these nodes is assumed to be consumed immediately and 

the contaminant will not be able to travel further in the system.   

The contamination detection limit for each sensor is entered in the default parameters menu for 

the program (a detection limit of 0.01 mg/l was used in this study). When the concentration of 

the contaminant reaches the detection limit at the particular sensor node, the contaminant is 

considered to be detected. The tool requires input for the total simulation time and considers this 

the maximum travel time. Any travel time past the total simulation time (24 hours in this study) 

will be considered this maximum time for calculation purposes.  
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As indicated previously, TEVA-SPOT provides the user with several different design options 

(i.e. minimize number of failed detections, extend of contamination, mass/volume consumed, or 

time to detection). In order to minimize the computational burden and maximize use of the 

algorithm from small to medium sized systems, the KYPIPE Sensor Placement Tool considers 

minimum time to detect as the sole operational objective.  

Water Distribution System Models 

In order to demonstrate the utility of the proposed approach to the sensor placement problem, the 

sensor placement software was evaluated using a database of 12 small water distribution system 

models (Jolly et al., 2013). While each of the models represent a real distribution system in 

Kentucky, all models were given a generic name in the form KY #. All identifying information 

for the actual systems represented by the models was removed, such as names of tanks, to protect 

the security of the utilities. Model names were grouped by physical configuration type (Von 

Huben, 2005). The first four models, KY 1 – KY 4, are characterized as grid systems. Models 

KY 5 – KY 8 are classified as loop systems, while the remaining models, KY 9 – KY 12, are 

characterized as branch systems. The layout of one system representing each of the three 

configurations is displayed in Figure 5.  

 

Figure 5. System Models (A) Grid; (B) Loop; (C) Branch. 

Verification Studies 

Contamination Scenarios 

In order to evaluate the performance of the KYIPE Sensor Placement Tool and to compare its 

performance against TEVA-SPOT, the tool was executed on the 12 hydraulic models for 15 

different contamination scenarios. The contamination scenario is determined by both the rate of 

injection of the contaminant (in mg/min) and the total injection time (in hours). Contamination 

scenarios were created for three different general scenarios: fixed amount, fixed rate, and fixed 

time. Each general scenario is comprised of five specific sets of an injection rate with a total 

injection time. The 15 contamination scenarios performed on each model are displayed in Table 

1. 
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Table 1. Contamination Scenarios. 

  

Injection Rate 

(mg/min) 

Injection 

Time (hours) 

Total Contaminant 

Injected (g) 

Fixed 

Amount 

(Vary 

Time) 

4000 1 240 

2000 2 240 

1000 4 240 

500 8 240 

250 16 240 

 Fixed 

Rate 

(Vary 

Amount) 

1000 1 60 

1000 2 120 

1000 4 240 

1000 8 480 

1000 16 960 

Fixed 

Time 

(Vary 

Rate) 

600 4 144 

800 4 192 

1000 4 240 

1200 4 288 

1400 4 336 

 

All 15 contamination scenarios were executed on each of the 12 water distribution system 

models using both TEVA-SPOT and KYPIPE. It was desired to compare the sensor placement 

results between KYPIPE and TEVA-SPOT for a variety of scenarios. To be able to directly 

compare results, it was required that all parameters matched between the programs. First, the 

general network models used in each comparison were identical. The TEVA-SPOT program uses 

a model input from EPANET. Even though minor differences exist between KYPIPE and 

EPANET, all major system components and characteristics of these components matched 

between the two programs. An example of a difference between KYPIPE and EPANET is that 

KYPIPE allows tanks to be measured as a total volume or fixed diameter, while EPANET only 

allows a fixed diameter as input for tank size. To make the models as similar as possible, all 

tanks in both KYPIPE and EPANET were set as fixed diameters. 

Parameters used in the sensor placement tool in KYPIPE and TEVA-SPOT were also 

standardized. The WQ computational time (labeled as the hydraulic timestep in TEVA-SPOT) 

was set to 60 seconds, and the total simulation time was set to 24 hours. The detection limit for 

both programs was also set to 0.01 mg/l. This ensured one program would not detect the 

contaminant faster than the other simply because it had a lower detection limit. As mentioned, 

the KYPIPE sensor placement tool utilizes the EPANET engine to perform hydraulic and water 

quality calculations. This further reduces any differences in the programs prior to sensor 

placement optimization.  

Comparison of Times to Detection 

The baseline contamination scenario (considered the baseline case because it was present in all 

three general contamination scenarios) injected a contaminant at 1000 mg/min for four hours. 
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The comparison of time to detection between the two programs using the baseline condition for 

the placement of one sensor is shown in Figure 6. Because the time differences between the 

nodes selected by TEVA-SPOT and KYPIPE are minimal, the percent differences in times are 

also displayed.  

 

Figure 6. Comparison of Nodes Selected by KYPIPE and TEVA-SPOT for Baseline 

Conditions and Placement of One Sensor: (A) Times to Detection; (B) Percent Difference in 

Times to Detection. 

Figure 6 shows that sensors selected by KYPIPE for the baseline contamination scenario resulted 

in times to detection either equal to that of nodes selected by TEVA-SPOT or slightly lower for 

all system models. Similar results were found for all 15 of the contamination scenarios. The 

KYPIPE optimization method resulted in slightly lower or equal times to detection than TEVA-

SPOT for all contamination scenarios in all 12 systems, thus confirming that the complete 

enumeration strategy employed by KYPIPE was either equal to or superior to the performance of 

the GRASP algorithm used by TEVA-SPOT. Similar results were obtained for the two sensor 

solutions as well. Although sensors selected by KYPIPE were always superior or equal to those 

chosen by TEVA-SPOT, the differences in average times to detection were minimal. The time to 

detection between the nodes selected by each program for the same system and contamination 

scenario were fairly similar (if not equal), as shown by the average percent difference in time to 

detection (averaged over the 15 contamination scenarios) displayed in Figure 7. The average 
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percent difference in times is relatively low for all systems. It should be noted that the few 

systems with 0 percent average time differences did not all have matching sensor selection for all 

15 scenarios, but the time differences between the selected nodes in these cases were negligible.  

 

Figure 7. Average Percent Difference in Time to Detection between Nodes Selected by 

TEVA-SPOT and KYPIPE for Baseline Scenario and Placement of One Sensor. 

While the TEVA-SPOT algorithm generally required less computation time than KYPIPE, the 

differences in times were not that significant. The largest system (i.e. KY 12) required 45 

minutes for KYPIPE and 13 minutes by TEVA-SPOT for the placement of one sensor. When 

placing two sensors, KYPIPE required 1 hour and 20 minutes while TEVA-SPOT used 13.5 

minutes. Differences in computational times were not as significant for the remainder of systems 

in the model database. 

In addition to comparing the times to detection for nodes selected by KYIPIPE and TEVA-

SPOT, the times to detection obtained by KYIPIPE averaged over the contamination scenarios 

for both one and two sensor systems were also compared (see Figure 8).  As can be seen from the 

figure, addition of a second sensor, at least for the 12 systems examined, did not seem to add a 

significant amount of benefit. All but three of the systems resulted in less than 15 percent 

decrease in average time to detection when the second sensor was added. Thus, for the small 

systems analyzed, one might argue that one sensor might be adequate. Additional analyses would 

be required to confirm such a hypothesis. 
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Figure 8. Comparison of Performance between the Placement of One and Two Sensors. 

Comparison of Identical Sensor Placement 

Along with a comparison of the times to detection of nodes selected by KYPIPE and TEVA-

SPOT, the location of nodes chosen as optimal sensors locations by both programs were also 

compared. Some contamination scenarios for the same system resulted in TEVA-SPOT and 

KYPIPE selecting the same nodes as the optimal sensor locations. The percentage of the 15 

contamination scenarios that resulted in identical sensor selection between KYPIPE and TEVA-

SPOT for each system is summarized in Figure 9 and Figure 10. 

 

Figure 9. Percentage of Contamination Scenarios with Identical Sensor Selection between 

KYPIPE and TEVA-SPOT (1 sensor). 
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Figure 10. Percentage of Contamination Scenarios with Identical Sensor Selection between 

KYPIPE and TEVA-SPOT (2 sensors). 

Figure 9 shows that some systems resulted in matching sensor selection between KYPIPE and 

TEVA-SPOT for all 15 contamination scenarios, while other networks did not have any 

matching sensor placement among scenarios. For the placement of one sensor, four of the 12 

systems had matching optimal sensor nodes for all 15 scenarios, and eight of the 12 models had 

identical placement for over 50 percent of scenarios. On average, 9.4 out of the 15 scenarios 

(63%) resulted in identical placement of sensors for all systems. There were four systems that 

had less than 20 percent matching sensor nodes between KYPIPE and TEVA-SPOT, and one 

system (KY 9) did not have any matching sensor selection. In these systems with very few 

matching sensors, further investigation revealed that the vast majority of these sensors were still 

in very close proximity to each other. Only six contamination scenarios (out of the 15 scenarios 

performed on 12 systems for a total of 180 simulations) led to sensor locations that were 

considered to be far away from each other in the system, and all of these cases occurred in KY 8. 

Although these few scenarios resulted in sensor selection that was considered to have significant 

spatial variation, the nodes were still located in the same general region of the system. This 

concept is shown in Figure 11. The top portion shows sensor selection that is considered to have 

significant spatial variation, and the bottom portion illustrates sensor selection in close 

proximity. As mentioned, the vast majority of scenarios with different sensor selection between 

KYPIPE and TEVA-SPOT resulted in nodes in very close proximity to each other for the 

placement of one sensor.  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

KY1 KY 2 KY 3 KY 4 KY 5 KY 6 KY 7 KY 8 KY 9 KY 10 KY 11 KY 12

P
e

rc
e

n
ta

ge
 w

it
h

 Id
e

n
ti

ca
l S

e
n

so
r 

P
la

ce
m

e
n

t

System

1 of 2 sensors

2 of 2 sensors



15 

 

 

Figure 11. Spatial Variation in Sensor Selection (KY 8): (A) Significant Spatial Variation; 

(B) Close Proximity 

Similar trends were present when placing two sensors as with the one sensor scenario. Figure 10 

shows that some systems resulted in both sensors matching between KYPIPE and TEVA-SPOT 

for many of the 15 contamination scenarios, while other systems matched one out of two sensors 

placed for certain scenarios. KY 3 was the only system to result in identical sensor placement for 

both sensors between KYPIPE and TEVA-SPOT for all 15 contamination scenarios. KY 1, KY 

3, KY 4, and KY 6 resulted in two out of two matching sensor node selection for over 50 percent 

of the contamination scenarios, showing that KYPIPE and TEVA-SPOT produced very similar 

results in these systems. KY 8, KY 9, and KY 10 did not have any scenarios that matched both 

sensors, but these systems did have one out of two identical sensor nodes for several scenarios. 

KY 2, KY 5, KY 7, KY 9, KY 10, and KY 11 resulted in one out of two matching sensors for 

over 70 percent of the contamination scenarios. An average of 5.8 scenarios (38%) of the 15 

contamination scenarios averaged over all systems resulted in matching sensor selection for both 

sensors, while 7.3 out of the 15 scenarios (49%) resulted in identical sensor placement for one of 

the two sensors, averaged over all 12 networks.  

The cases where KYPIPE and TEVA-SPOT recommended different sensor nodes were 

investigated. As with the placement of one sensor, the vast majority of these cases resulted in 

placement of sensors that were in close proximity to each other. Only a few cases produced 

results where the sensors recommended by KYPIPE and TEVA-SPOT were significantly far 

away from each other. Specifically, 20 cases (out of the 15 simulations run on all 12 systems) led 

to sensor selection between the two programs that varied considerably spatially. In all of these 

cases, only one of the two sensors placed showed significant spatial variation between the two 

programs. In 18 of these cases, placement of the other sensor was identical, and the other two 

scenarios placed the remaining sensor in very close proximity. 15 of these 20 cases of significant 

spatial variation of one sensor occurred in KY 10, three were present in KY 6, and the final two 

cases occurred in KY 12.  

Because several cases occurred where KYPIPE and TEVA-SPOT selected different sensor 

nodes, the ranking of the nodes chosen by TEVA-SPOT were investigated using the average 

times to detection for all possible sensor locations generated by KYIPE. The data in Table 2 

(A)

(B)
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displays the percentage of the 15 contamination scenarios that resulted in differing sensor node 

selection between KYPIPE and TEVA-SPOT for the placement of one sensor (also shown in 

Figure 9). Table 2 also shows the ranking of the node selected by TEVA-SPOT (averaged over 

all 15 contamination scenarios) based on times to detection generated by KYPIPE, the total 

number of possible sensor locations, and the percentage of sensor locations with higher rankings 

(lower times to detection) than the location selected by TEVA. The values reported for average 

ranking of the node and percent of sensor locations with lower times to detect include cases 

where KYPIPE and TEVA-SPOT selected the same sensor.  

Table 2. Ranking of Sensor Nodes Selected by TEVA-SPOT (1 sensor). 

System 
 Possible 

Sensor 

Locations 

Percentage of 

Scenarios Resulting 

in Different Sensor 

Selection 

Average Ranking 

(by KYPIPE) of 

Node Selected by 

TEVA-SPOT 

Average Percent of 

Sensor Locations 

with Lower Times 

to Detect 

KY 1 509 13.3% 1.13 0.03% 

KY 2 597 13.3% 1.13 0.02% 

KY 3 224 0.0% 1.00 0.00% 

KY 4 683 0.0% 1.00 0.00% 

KY 5 305 46.7% 1.87 0.28% 

KY 6 386 0.0% 1.00 0.00% 

KY 7 378 6.7% 1.20 0.05% 

KY 8 926 93.3% 7.27 0.68% 

KY 9 836 100.0% 2.53 0.18% 

KY 10 673 0.0% 1.00 0.00% 

KY 11 547 86.7% 2.73 0.32% 

KY 12 1908 86.7% 8.13 0.37% 

 

If the node selected by TEVA-SPOT is ranked high (and thus the percent of sensor combinations 

with lower times to detection is low), this shows the results provided by the two programs are 

similar. Even when KYPIPE and TEVA-SPOT select different ideal sensor nodes, similar times 

to detection and high rankings of the node chosen by TEVA-SPOT show that both programs are 

effective in providing sensor locations that will detect contaminants quickly. Table 2 shows that 

all systems averaged less than 1 percent of possible sensor combinations that are considered 

better than the sensor locations selected by TEVA-SPOT in terms of low time to detection. Even 

though KY 8 and KY 12 had slightly higher values for average ranking of the node selected by 

TEVA (7.27 and 8.13, respectively), they still had very low percentages of sensor locations with 

faster times to detection.  

Analysis and Discussion 

Results of the verification study demonstrate the effectiveness of the KYPIPE sensor placement 

optimization method for small systems. The slightly faster times to detection (as compared to 

nodes selected by TEVA-SPOT) for the non-common selected sensor locations using the 
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KYPIPE algorithm show that KYPIPE is producing slightly superior sensor placement results to 

TEVA-SPOT (utilizing the GRASP heuristic method). However, the relatively low differences in 

average times to detection of the selected sensor nodes show that results between the two 

programs are very similar. The programs did select identical sensor locations in many cases, but 

the KYPIPE algorithm will always produce superior (or the same) sensor placement over TEVA-

SPOT. The average percent difference in time to detection between nodes selected by TEVA-

SPOT and KYPIPE for the placement of one sensor was 0.15 percent. This value takes into 

account the numerous scenarios where TEVA-SPOT and KYPIPE selected the same sensor 

node. The maximum percent difference in average time to detection between differing nodes 

selected by the two programs was 2.9 percent.   

Because the models used in both TEVA-SPOT and KYPIPE software are uncalibrated models of 

real distribution systems, the hydraulic/water quality analyses and subsequent times to detection 

for all possible sensor locations are only estimates. However, the data should be fairly similar to 

results that would occur through tracer studies or other field testing. Because KYPIPE utilizes 

the EPANET engine to perform hydraulic/water quality analyses, the occasional slightly faster 

times to detection can be attributed to the optimization method utilized by KYPIPE, which will 

always produce superior or equal results to TEVA-SPOT. KYPIPE utilizes an enumeration 

method that calculates travel times for the entire solution space while a GRASP heuristic method 

was utilized in TEVA-SPOT for this study. Therefore, it is logical that the times between the 

programs are similar but KYPIPE consistently produces slightly faster times.  

Summary and Conclusions 

TEVA-SPOT has been developed to analyze the vulnerability of drinking water distribution 

networks to contamination and recommend locations to deploy water quality sensors as a 

component of contamination warning systems. However, the software may not be appropriate for 

small utilities in terms of the simplicity and ease of use. A Water Quality Sensor Placement Tool 

was developed with KYPIPE to accomplish the objective of providing a simple tool to aid small 

utilities in sensor placement. The KYPIPE tool uses a complete enumeration optimization 

scheme along with EPANET for both hydraulic and water quality analysis.  Both TEVA-SPOT 

and KYPIPE were used to locate either one or two water quality sensors for 12 different water 

distribution systems.  15 different contamination scenarios were evaluated for each system.  The 

results of this analysis have provided the following conclusions: 

 

1) The KYPIPE sensor placement tool provides sensor locations equal to or superior to those 

provided by TEVA-SPOT when using the GRASP optimization option along with an objective 

to minimize the time to detection. 

 

2) The TEVA-SPOT algorithm was able to converge to a solution in less time than the KYPIPE 

sensor tool. The relative difference in computational times was greater for the two sensor 

solutions than the one sensor solutions. Such an observation is to be expected given the fact that 

the KYPIPE sensor tool uses a complete enumeration algorithm.  Despite this fact, the actual 

computational requirements for the KYPIPE tool were not excessive, even for the largest system 

analyzed (i.e. KY 12 which had nearly 2000 potential sensor locations). 
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3) While the KYPIPE sensor placement tool was superior to the TEVA-SPOT algorithm, the 

results were generally not that significant. Thus, the GRASP algorithm used by TEVA-SPOT 

would appear to be fairly efficient, even providing the global optimal solution in eight of the 12 

systems analyzed (for the baseline contamination scenario when placing one sensor).  

 

4) A comparison of the times to detection for both the placement of one and two sensors in the 

systems revealed that the average time to detect did not significantly decrease with the addition 

of a second sensor.  Thus, for small systems, use of a single sensor might be adequate to provide 

an acceptable level of protection for utilities with limited financial resources. Additional analyses 

with an increased number of sensors should be performed to validate this hypothesis. 

 

5) If one or two sensors will provide sufficient coverage for many small systems, some general 

rules or guidelines could be developed for sensor placement that might be able to avoid the 

requirement of a calibrated network model as currently required by TEVA-SPOT and KYPIPE.  

One possible such methodology for single sensor systems has been proposed by Schal et al. 

(2013). Such methodologies could prove to be especially helpful for small utilities that may not 

have the technical or financial resources to employ computer model based approaches such as 

TEVA-SPOT. 
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